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New Diversity Arrays Technology (DArT) markers for tetraploid
oat (Avena magna Murphy et Terrell) provide the first complete
oat linkage map and markers linked to domestication genes

from hexaploid A. sativa L.
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Abstract Nutritional benefits of cultivated oat (Avena
sativa L., 2n = 6x = 42, AACCDD) are well recognized;
however, seed protein levels are modest and resources for
genetic improvement are scarce. The wild tetraploid,
A. magna Murphy et Terrell (syn A. maroccana Gdgr.,
2n = 4x = 28, CCDD), which contains approximately
31% seed protein, was hybridized with cultivated oat to
produce a domesticated A. magna. Wild and cultivated
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accessions were crossed to generate a recombinant inbred
line (RIL) population. Although these materials could be
used to develop domesticated, high-protein oat, mapping
and quantitative trait loci introgression is hindered by a
near absence of genetic markers. Objectives of this study
were to develop high-throughput, A. magna-specific
markers; generate a genetic linkage map based on the
A. magna RIL population; and map genes controlling oat
domestication. A Diversity Arrays Technology (DArT)
array derived from 10 A. magna genotypes was used to
generate 2,688 genome-specific probes. These, with 12,672
additional oat clones, produced 2,349 polymorphic mark-
ers, including 498 (21.2%) from A. magna arrays and 1,851
(78.8%) from other Avena libraries. Linkage analysis
included 974 DArT markers, 26 microsatellites, 13 SNPs,
and 4 phenotypic markers, and resulted in a 14-linkage-
group map. Marker-to-marker correlation coefficient anal-
ysis allowed classification of shared markers as unique or
redundant, and putative linkage-group-to-genome anchor-
ing. Results of this study provide for the first time a
collection of high-throughput tetraploid oat markers and a
comprehensive map of the genome, providing insights to
the genome ancestry of oat and affording a resource for
study of oat domestication, gene transfer, and comparative
genomics.

Introduction

Cultivated oat (Avena sativa L. and A. byzantina C. Koch,
2n = 6x = 42, AACCDD genomes) is the world’s fifth or
sixth most important cereal crop. Its importance in the
human diet is increasing due to its nutritional benefits,
which include a high content of serum LDL cholesterol-
lowering soluble fiber, good-quality protein, and high oil
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content (Braaten et al. 1994; Eggum et al. 1989). Of these,
increasing protein content has been an important breeding
objective in oat for at least three decades (McFerson and
Frey 1991; Zhu et al. 2004). This objective is becoming
increasingly important as continued research highlights
health benefits of dietary protein, particularly protein from
plant sources (Nutall et al. 1984; Wang et al. 2008).
Compared to the protein composition of other major
cereals, oat is higher in essential amino acids, making oat a
nutritionally superior crop and an excellent target for
increased seed protein content (Jones et al. 1948; Young
and Pellett 1994).

The wild Moroccan oat species A. magna Murphy et
Terrell (syn. A. maroccana Gdgr., 2n = 4x = 28, CCDD
genomes) is a potentially valuable resource for protein
content, with a measured value of 31% protein in the
grain (Ladizinsky and Fainstein 1977). This value could
be commercialized via direct domestication, following the
model of tetraploid wheat (Distelfeld et al. 2006), or
through creation of synthetic hexaploid oat containing
identified quantitative trait loci (Ladizinsky 2000).
Although A. magna carries resistance to crown rust
(Puccinia coronata f. sp. avenae) and powdery mildew
(Erysiphe graminis) (Ladizinsky 1995; Ohm and Shaner
1992), it has several undesirable characteristics that need
to be addressed before cultivation, including lack of
domestication and susceptibility to barley yellow dwarf
virus.

Avena magna is part of the secondary gene pool for
A. sativa because hybrids are completely self-sterile
(Harlan et al. 1973; Ladizinsky 1995; Ladizinsky and
Fainstein 1977; Thomas 1992), but 5x hybrids can be
backcrossed as females via pollination with tetraploid or
hexaploid oat. Fluorescent in situ hybridization (FISH)
experiments with pAs120a, an A genome-abundant
sequence from A. strigosa, indicate that A. magna may
carry the C and D genomes that are also found in hexaploid
oat (Linares et al. 1998).

Ladizinsky (1995) described the sexual transfer of the
domestication syndrome, including genes for reduced awn
size (A), yellow lemma color (Lc), glabrous lemma
(Lp), and non-shattering spikelet (Ba), from A. sativa to
A. magna through two successive backcrosses. The first
pentaploid hybrids were pollinated by A. magna in the
field, yielding a small number of seeds, including a seed
germinated to produce a partially fertile 2n = 32 plant
designated Aa2. The F, seeds derived from Aa2 having
28 chromosomes, along with the domestication syndrome,
were then raised and either (1) crossed with wild
A. magna strains to evaluate segregation of the four
domestication traits; or (2) crossed passively with A. sa-
tiva pollen to initiate a second backcross cycle. Cross-
group #1 was used to verify that the four genes
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segregated essentially in a 3:1 manner and that they
formed a single linkage group spanning approximately 19
map units. Cross-group #2 formed S5x hybrids that were
backcrossed a second time to A. magna, this time to
domesticated Aa2-3 (a fertile, selfed 2n = 28 offspring of
Aa2). One of these plants, designated Ba 13-13, was
selected due to its stable chromosome number (28) and
elevated protein content (24.07 vs. 18.05-18.75% A. sa-
tiva controls). Apart from the report of Gardner and Latta
(2006), there are no mapping populations with corre-
sponding linkage maps for any of the allotetraploid Avena
species. These authors assembled a rudimentary linkage
map for the aggressive weed A. barbata (AABB
genomes) using mostly dominant AFLP markers. Their
map contained 129 marker loci distributed among 19
linkage groups, for a total genome size of 644 cM, with a
maximum linkage group size of 61.5 cM. Although their
dominant AFLP markers provided little or no information
regarding sub-genome relationships, Gardner and Latta
demonstrated the usefulness of markers for identifying at
least 11 putative QTL: in their case for genomic regions
affecting environmental fitness.

Valid molecular markers are needed for construction
of a complete tetraploid linkage map (n = 14) and for
genome comparisons between tetraploid and hexaploid
oat. Historically, genetic marker development has been
focused on hexaploid oat. Available markers currently
encompass SCAR (Chong et al. 2004; Orr and Molnar
2008), SSR (Dumlupinar, unpublished; Li et al. 2000;
Pal et al. 2002), AFLP (Groh et al. 2001; Kremer et al.
2001), RFLP (O’Donoughue et al. 1992), and recently
Diversity Arrays Technology (DArT) (Tinker et al.
2009). The DArT platform is based on microarray
hybridizations of complexity-reduced genomic represen-
tations, and provides comprehensive genome coverage
with no prior sequence information (Jaccoud et al. 2001;
Wenzl et al. 2004). These characteristics make DArT
markers well suited to genotyping of little-characterized
genomes.

Objectives of the present study were to: (1) expand the
existing DArT marker resource to included representation
from A. magna (CCDD) genomes; (2) elucidate the poly-
morphism content of newly-developed DArT and hexa-
ploid-derived SSR and SNP markers in A. magna; (3)
develop the first complete linkage map for a tetraploid oat;
and (4) map the hexaploid domestication syndrome genes.
This work should provide the foundation for further
domestication of tetraploid oat, leading perhaps to culti-
vation of a high-protein oat resource. It should also provide
a unique resource for evolutionary studies aimed at deter-
mining ancestral genome donors, and for measuring the
degree of rearrangement during and since the polyploidi-
zation of tetraploid and hexaploid Avena.
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Materials and methods
Plant material and DNA extraction

A population of 117 recombinant inbred lines (RILs) was
developed through hybridization of the wild tetraploid
A. magna accession #169 with domesticated A. magna (Ba
13-13), a BC; domesticated, inbred selection from a cross
of A. sativa (undefined cv., either ‘Ogle’, ‘86-4189’, ‘86-
4467 or ‘86-5698’) x A. magna #169 (Ladizinsky 1995).
Domesticated A. magna Ba 13-13 was tetraploid, but
morphologically akin to common hexaploid oat. The Ba
13-13/A. magna #169 (BAM) RIL population was
increased by single seed descent to the Fg stage and cyto-
logically examined for ploidy level at the F, and Fg. Nine
additional A. magna lines (Cc 7069, Cc7070, Cc7071,
Cc7073, Cc7237, Cc7238, Cc7240, Cc7244, Clav 8330)
were selected for construction of a dedicated A. magna
DArT array. All genotypes originated from Morocco.
Plants were grown in 4-inch square pots, in a greenhouse
with an approximately 16-h photoperiod and a daytime
temperature ranging from 22 to 30°C.

DNA was extracted from fresh, flash-frozen leaf tissue
using a cetyl trimethyl ammonium bromide (CTAB) pro-
tocol. Tissue was ground in liquid N, and 600 pl extraction
buffer (0.35 M sorbitol, 0.3 M Tris—HCl pH 8.0, 5 mM
EDTA pH 8.0, 2 M NaCl, 2% CTAB, 5% (w/v) N-lau-
roylsarcosine, 2% (w/v) polyvinylpyrrolidone (PVP40,
K29-32), and 0.5% (w/v) sodium metabisulfite) was added
to the powder in a 2-ml centrifuge tube. After mixing, the
solution was incubated at 65°C for 60 min, 600 pl chlo-
roform was added, and the solution was mixed by inversion
and centrifuged at 10,000g for 20 min. The aqueous phase
was transferred to a fresh tube, 600 pl chilled isopropanol
was added, and the solution was mixed by inversion, held
at 4°C for approximately 2 h, and centrifuged at
10,000g for 30 min. Supernatant was then discarded, and
the pellet was washed twice with 70% EtOH, dried, and
resuspended in 1x TE buffer.

Morphological markers

Domestication traits were scored phenotypically at the F,
(117 RILs) and Fg (112 RILs) generations. Wild-type plants
were characterized by dominant lemma pubescence; pres-
ence of two large, geniculate awns also dominant; and
recessive basal disarticulation, defined by a prominent
abscission scar and seed shattering at maturity. Domesti-
cated types were glabrous and non-shattering, with a single,
small awn. The BAM RILs represented the two parental and
two intermediate phenotypes (Fig. 1): one non-shattering,
single awned, and pubescent (Fig. 1c); one shattering, with
two geniculate awns, and only basal pubescence (scored as

Fig. 1 BAM population phenotypes. Four phenotypes were present
in the Ba 13-13 x #169 RIL mapping population, including domes-
ticated (a), wild (b), and two intermediate phenotypes (c, d)

glabrous, Fig. 1d). Segregation ratios were analyzed for
each trait at the F, generation using expected Mendelian
ratios of 3:1 with standard Chi-square tests.

A distinct heterochromatic region in the long-arm telo-
mere of chromosome 3 (morphologically homologous to
A. sativa chromosome 5C) was observed to be associated
with the wild A. magna phenotypes (Jellen and Ladizinsky
2000; Jellen et al. 1993). This trait was cytologically scored
in the BAM population, with nitrous oxide treatment of
root tissue according to Kato (1999) and chromosome
preparation and banding generally according to Jellen et al.
(1993), but using Giemsa instead of Wright’s stain. To
evaluate linkage relationships, pairwise comparison was
performed at the F, generation with the knob and domes-
tication traits conforming to a single-gene model. Analyses
were based on the expected 1:2:1 ratio.

DATIT assay
Development of DArT markers followed published meth-

ods (Jaccoud et al. 2001; Tinker et al. 2009; Wenzl et al.
2004). To ensure adequate coverage of the A. magna
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genome, two dedicated libraries were constructed, using
standard Pstl/Taql complexity reduction. The first library,
representing genetic diversity, contained 1,152 clones from
9 A. magna genotypes (Cc 7069, Cc7070, Cc7071, Cc7073,
Cc7237, Cc7238, Cc7240, Cc7244, Clav 8330). The sec-
ond library included 1,536 clones from A. magna #169.

These clones, along with 12,672 supplementary oat
clones (1,536 from wild species; 11,136 from cultivated
materials) were used to print a dedicated array for mapping
and diversity analysis. Genomic representations of BA
13-13, #169, and 112 Fg RILs of the BAM mapping pop-
ulation were prepared using Pstl/Taql complexity reduc-
tion and hybridized to the DArT arrays. Polymorphism was
detected using dedicated software, DArTsoft (Diversity
Arrays Technology Pty Ltd, Australia), which applies
fuzzy K-means clustering to classify samples in a binary
manner (0/1) for a particular array feature.

SNP assay

SNP markers used in this study were identified by com-
parison of expressed tag (EST) sequences from the hexa-
ploid oat cultivars ‘Ogle1040’ (Brown and Jedlinski 1983),
‘TAM 0-301" (McDaniel 1974), ‘Gem’ (Duerst et al.
1999), and ‘HiFi’ (McMullen et al. 2005) using a new in
silico SNP selection pipeline (Oliver et al. 2011). Fifty-
three assays were validated using the BAM parents (Ba
13-13 and #169) and polymorphic markers were mapped
across 112 Fg RILs of the BAM population. Genotyping
was performed by high-resolution melt analysis, using a
BioRad C1000 thermal cycler with a CFX96 optics mod-
ule. Reactions comprised 1x SsoFast EvaGreen Supermix
(BioRad) with 55 ng genomic DNA and 0.5 pM forward
and reverse primers in a 12.5 pl reaction volume. Ther-
mocycling conditions comprised an initial denaturation at
98°C for 2 min; 46 cycles of 98°C for 2 s and 55°C for 5 s,
with fluorescence measured at the end of each cycle; and a
melt curve analysis, with a melt gradient from 65 to 95°C,
increasing in 0.2°C increments every 10 s, with fluores-
cence measured at the end of each increment. Melt curves
were analyzed using BioRad Precision Melt Analysis
Software Version 1.0.534.0511 and genotypes were
assigned based on differences in relative fluorescence units
as a function of melting temperature.

SSR assay

SSR markers used in this study were identified from enriched
genomic libraries using the hexaploid cultivar Ogle1040.
Assays for selected microsatellites were validated across a
panel of nine hexaploid mapping parents [TAM 0-405
(Texas A&M breeding line), Otana (Stewart et al. 1978),
Ogle1040, TAM O-301, Sun-II (National Genetic Resources
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Program, USA), Kanota (Stanton 1955), MN841801-1
(Univ. MN breeding notes), Noble-2 (Univ. MN breeding
notes) and Makuru (Baum 1972)] and Ba 13-13 and #169.
Microsatellites polymorphic between the BAM parental
lines were screened across 112 Fg RILs and mapped.

Polymerase chain reaction (PCR) was performed in
25-ul PCR reaction volumes containing approximately
120 ng DNA, 5 pl each primer (10 pmol L™Y), 5 ul 10x
buffer (NEB, #B9014), an additional 1.2 ng MgCl, (NEB,
#B0267S), 1 ul dNTPs (2.5 mol L™'; NEB, #N0447L),
and 2.5 U Taq polymerase (NEB, #B9014). The conditions
were 94°C for 4 min followed by 40 cycles of 94°C for
1 min, 56°C for 1 min, and 72°C for 1 min, with a final
elongation of 4 min at 72°C. Samples were held at 4°C
until prepared for electrophoresis. Reaction products were
separated on 3% SFR agarose (Amresco, AMR-J234) and
band sizes were estimated by comparison with a 100 base
pair (bp) ladder (NEB, #N0467S).

Map construction

Alleles for the 112 BAM RILs at each locus were deter-
mined by comparison with parental alleles (Online
Resource 1). Using this information, preliminary mapping
of the domestication syndrome genes was carried out with
Chi-square and pairwise analyses of morphological mark-
ers. Further linkage analysis and map construction were
performed using the MultiPoint package (Mester et al.
2003, 2004; Korol et al. 2009). Multilocus ordering was
determined using an algorithm based on the evolutionary
optimization strategy (Mester et al. 2003, 2004), using
maximum likelihood estimation to calculate pairwise
recombination fractions (rf) for all marker pairs. Pre-
liminary clustering and assignment of markers to a linkage
group (LG) was evaluated at an rf = 0.05 threshold.
Selection of framework markers and stability of marker
neighborhoods were evaluated concurrently by jackknife
resampling, with repeated verification of marker order and
removal of unreliable markers. Markers mapping to the
same location were grouped and represented by a single
delegate. Stable LGs were joined terminally by incremen-
tally increasing the recombination threshold, with a final rf
of 0.30. Remaining markers were then attached to a
framework marker or an optimal interval. To avoid erro-
neous linkage groups based on incorrect marker phase,
genotypes of unlinked loci or loci in fragment groups were
converted to the alternate phase, reclustered, and assigned
to linkage groups.

Diversity analysis

Genotypes of DArT markers across 11 A. magna acces-
sions were used to assess linkage disequilibrium (LD) and
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to determine marker utility based on hierarchical cluster-
ing. All analyses were performed using JMP Genomics 4.1
(SAS Institute, Cary, NC) and included 2,014 polymorphic
DArT markers, of which 974 were mapped on the BAM
population. Markers with one or more null genotypes
within the A. magna panel were not included in the anal-
ysis. Linkage disequilibrium was calculated using marker
variables as numeric genotypes and BAM linkage map
groups and positions as the group and distance units.
Maximum likelihood was used for haplotype estimation.
Hierarchical clustering was performed using the Ward
method (1963) and three principal components, with den-
drogram construction based on the distance scale.

Results
Morphological markers

Chi-square analysis suggested that awnedness and basal
articulation followed a 3:1 segregation ratio in the F, and
segregated 1:1 in subsequent generations, indicating
monogenic control (Table 1; Online resource 1). Segrega-
tion of lemma pubescence did not follow a recognizable
ratio, although Ladizinsky (1995) considered this trait to be
controlled by a single gene. Segregation of lemma color
was ambiguous, with phenotype distinctions blurred by a
range of intermediates, and was not scored in this study.

Cytogenetic analysis of the heterochromatic knob in the
F, generation followed seed phenotypes (Fig. 1): wild
types had the knob on both 5C homologs, domesticated
types lacked the knob, and intermediate types generally
had a knob on only one chromosome (Fig. 2). Pairwise
analyses indicated that awnedness and basal articulation
are linked to the heterochromatic knob at the long-arm
terminus of chromosome 5C (Table 2).

Molecular markers

A total of 15,360 DArT probes were analyzed for hybrid-
ization, resulting in 2349 (15.29%) that produced a
detectable signal. Ninety-five of these DArT loci mapped,
but were ambiguous on the A. magna panel and were

consequently not included in the diversity analyses. Of the
remaining loci, 447 (21.03%) were new and specific to the
CCDD genome of A. magna, while 1,679 (78.97%) were
from existing Avena arrays (Tinker et al. 2009). Seventy-
six loci were not polymorphic across the diversity panel
and removed from subsequent analyses. Of the 2,050 loci
remaining, 36 had a minor allele frequency (MAF) <0.10
and were null in at least one of the eleven diversity lines.
These were removed, leaving a total of 2,014 loci.

Assays for 67 in silico SNP loci derived from hexaploid
oat sequence were evaluated across the BAM parental
lines. Fourteen (20.90%) were polymorphic and robust
across the BAM population. One of these had segregation
distortion that did not follow the trend within the linkage
group and was discarded; remaining markers were incor-
porated in the map. Of these, all but one (RA 1rc40347_1)
have been mapped in a hexaploid RIL population (Oliver
et al. 2010). Similarly, assays for 244 robust hexaploid oat
derived microsatellites (Dumlupinar, unpublished) were
evaluated across the parental lines. Twenty-six were
polymorphic and clearly mapped in the BAM population.
Unfortunately, only four loci had shared polymorphism
between the tetraploid and hexaploid maps.

Diversity analysis

To determine the utility of these markers, MAF and hier-
archical clustering based on Ward’s method were applied
to a panel of 2,014 DArT loci across 11 A. magna geno-
types. The analysis indicated significant relationships,
partitioning accessions into three major clusters, with both
BAM parents as outliers (Fig. 4). Ba 13-13, the domesti-
cated A. magna accession, clustered independently from
the first node, suggesting an influence of hexaploid DNA.
Other cluster relationships could be based on geographic
origin.

Genetic map

Based on consistent segregation ratios and minimal dis-
tortion in the BAM population, 974 DArT loci, 26 micro-
satellites, 13 SNP markers, and 4 morphological markers
were selected to construct the genetic linkage map. The

Table 1 Chi-square analysis of

2

L . . Trait Phenotype No. observed b p value
domestication traits segregating
inawild x cultivated A. magna g, gisarticulation Non-shattering 88 0.00285 0.9574
F, recombinant inbred line )
population Shattering 29
Awnedness Two awns 87 0.02564 0.8728
One awn 30
Lemma pubescence Pubescent 100 6.8404 ~0.009
Analyses were based on an Glabrous 17

expected 3:1 segregation ratio
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knob.
C-banded root-tip metaphase cells of the segregating BAM [Ba
13-13 (non-5C knob) x #169 (5C knob)] population. a BAM-21 F,

Fig. 2 Photomicrographs of heterochromatic cytological

Table 2 Pairwise comparison of domestication traits with the cyto-
genetic knob on chromosome 5C

2

Trait Phenotype  No. observed b4 p value
Knob phenotype
+  +H- =
Basal Non- 9 51 28 93.120 1.48E—18
articulation  shattering
Shattering 26 2 1
Awnedness  Two awns 35 52 0 115.547 2.775E-23

One awn 0 1 29

Analyses were performed on traits conforming to a single-gene model
and based on an expected 1:2:1 ratio in the F2 generation

+ homozygous knob, +/— heterozygous knob,— homozygous non-
knob

MultiPoint mapping software was used to establish linkage
groups and to simultaneously determine marker order and
select informative framework or skeleton markers while
removing problematic markers. Map construction involved
1,017 markers and 112 RILs, giving a maximum recom-
bination resolution of nearly 1 cM. The framework map
comprised 14 linkage groups and 362 markers at 214
unique loci, with a total map distance of 1,411.1 cM. An
additional 655 markers were attached to the framework at
the optimal interval. Framework markers comprised 332
DArTs (66 from the A. magna array, 228 from hexaploid
arrays, and 38 from a wild species array); 16 microsatel-
lites; 10 SNPs; and 4 morphological markers (Table 3).
Markers were generally well distributed, with dense cov-
erage on two linkage groups (BAM-1, BAM-2) and occa-
sional marker intervals of 25-35 cM (BAM 9, 10, 11, 14)
(Fig. 3; Table 3).

Loci for basal abscission, awnedness, and the cytologi-
cal knob mapped to the terminus of BAM 13, providing an
anchor to associate this linkage group with chromosome
5C. Lemma pubescence mapped to the end of linkage
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plant, homozygous non-5C knob (arrows), b BAM-108 RIL plant,
homozygous 5C knob (arrows), ¢ BAM-25 F, plant, heterozygous
non-knob (white arrow)/knob (black arrow). Magnification is x 1,000

group BAM 11, suggesting the phenotype is likely to be
controlled, at least predominantly, by a major QTL in this
region.

Linkage disequilibrium

Linkage disequilibrium analysis was not meaningful based
on the small sample of genotypes (n = 11) included in this
study. However, linkage group-specific heat plots based on
mapped marker-to-marker correlation coefficients were
used to discriminate among redundant markers at shared
loci and to reveal conserved genetic blocks within the
linkage group.

Mapped marker-to-marker correlation coefficients were
readily visualized by two-way color profiles within a heat
plot, disrupting the random pattern and resulting in iden-
tical color blocks based on hybridized (red) and non-
hybridized (blue) alleles (Online Resource 2). Markers
generating identical profiles along both axes, mapping to
the same locus, and not in an area of obvious linkage
disequilibrium were considered redundant. Within the map
framework, 68 loci were represented by more than one
marker. At these shared loci, 82 of 201 markers (40.8%)
were redundant, with coverage representing approximately
half (52.94%) of the 68 loci. Thus, 47.06% of shared loci
were comprised of only unique markers.

Clusters of loci containing minor alleles suggested
conservation of genetic linkage blocks. Within these
regions, the origin of the hybridized allele was non-ran-
dom, deriving either from Ba 13-13 or from #169. This
clustering by allelic origin indicated two types of linkage
block conservation, and divided linkage groups into two
sets of seven (Fig. 3; Online Resource 2). In linkage groups
BAM 1, 2, 4, 7, 9, 10, and 12, regions contained minor
alleles matching the wild or domesticated parent. Con-
versely, linkage groups BAM 3, 5, 6, §, 11, 13, and 14
conserved the minor allele matching #169.
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Table 3 Marker distribution and map length of linkage groups in a genetic map constructed from a wild x cultivated A. magna recombinant

inbred line population

Linkage DArT SNP SSR Total no. Length Largest Avg. marker Avg. marl;er
Eroup Total® Framework® Total Framework Total Framework markers (cM) gap (€M) - dist. (cM)* dist. (M)
BAM 1 106 23 (52) 2 1) 2 1(1) 110 109.1 10.8 4.36 0.99
BAM 2 118 20 (40) 2 1) 3 3(3) 123 1235 13.7 5.15 1.00
BAM 3 26 12 (13) 0 0 2 1(1) 28 95.6 122 7.35 3.41
BAM 4 64 14 (22) 0 0 2 2(2) 66 1434 20.5 8.96 2.17
BAM S5 112 11 (27) 4 1) 2 1(1) 118 61.7 134 4.75 0.52
BAM 6 78 14 (20) 0 0 0 0 78 1049 223 7.49 1.34
BAM 7 32 15 (19) 1 0 0 0 33 87.6 19.8 5.84 2.65
BAM 8 112 9 (17) 1 1 (1) 5 44 118 852 174 6.09 0.72
BAM 9 60 15 (20) 0 0 2 2(2) 62 134.0 248 7.88 2.16
BAM 10 72 12 (18) 1 1(1) 1 0 74 904 36.5 6.95 1.22
BAM 11 50 9 (18) 2 2(2) 4 1(1) 57° 104.8 36.5 8.06 1.84
BAM 12 37 13 (22) 0 0 0 0 37 732 229 5.63 1.98
BAM 13 80 9 (24) 0 0 3 1 (1) 86" 935 221 7.79 1.09
BAM 14 27 12 (20) 0 0 0 0 27 1042  26.0 8.68 3.86
Total 974 188 (332) 13 7 (10) 26 16 (16) 1,017 1411.1

% Includes framework markers, shared markers, and attached markers
b
C
d Average marker distance including shared and attached markers

¢ Includes one morphological marker

 Includes three morphological markers

Discussion

Here, for the first time, an allotetraploid oat genome has
been resolved into 14 linkage groups defining two genome
classes. Delineation of linkage groups, selection of
framework markers, and resolution of marker order were
performed using the MultiPoint mapping package, with
algorithms based on marker order and incrementally
increasing recombination thresholds (Korol et al. 2009;
Mester et al. 2004). Closely linked markers were grouped
and represented by a delegate at a single locus, and itera-
tive resampling was performed to simultaneously deter-
mine marker order and to detect and remove markers
causing local instability in a linkage group. These features
allowed selection of the most informative and reliable
markers within the resolution of recombination, minimiz-
ing map distortion and achieving an unambiguous ordering
of framework markers.

The current map, consisting of 1,017 markers over
1,411.1 cM, has an average marker interval of 1.39 cM,
which is more dense than in previous oat maps, including
‘Kanota’ x ‘Ogle’ (1.6 cM) (Wight et al. 2003) and
‘Ogle1040’ x ‘TAM O-301" (3.8 cM) (Oliver et al.
2010). Marker density is attributed largely to DArT
markers, with coverage enhanced by a dedicated array

Number of framework markers at unique loci. Values in parenthesis include shared markers
Average marker distance between framework markers. Calculations were based on a single marker representative at each locus

accounting for multiple A. magna genotypes. As observed
with previous oat DArT studies (Tinker et al. 2009),
markers tended to cluster in various regions, with little or
no coverage in other regions. Other restriction-based
marker technologies have shown the same predisposition,
especially those based on methylation-sensitive enzymes
(Peng et al. 2000; Young et al. 1999) as is the case with
DATrT. Overall marker dispersal may reflect general gene
distribution throughout the linkage group, with regions of
sparse marker distribution corresponding to regions of
reduced gene frequency and increased recombination
around methylation-sensitive markers targeting gene-rich
areas. For example, research in wheat (Lukaszewski and
Curtis 1993; Werner et al. 1992), barley (Kiinzel et al.
2000), and, to a lesser extent, rice (Cheng et al. 2001; Wu
and Tanksley 1993) has indicated differing levels of
recombination and marker frequency within the chromo-
somes of these species, with crossovers generally sup-
pressed near the centromere and increased in telomeric
regions. Several mapping studies with DArT markers
showed clear marker clustering through the enrichment
for subtelomeric, gene-rich, euchromatic regions, com-
pared to other marker types both in barley (Wenzl et al.
2006) and wheat (Akbari et al. 2006). This trend, coupled
with the apparent marker distribution bias, may suggest
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Fig. 3 BAM linkage map. A fourteen-linkage-group genetic map of
tetraploid oat constructed from an A. magna recombinant inbred line
population. Attached markers are mapped to an optimal interval
within the framework. Markers with the “oPt-” prefix are DArTs
from the cultivated, A. magna, and wild species arrays. Microsatellite
markers have the “AB_AM_" prefix. SNP markers have the “GMI_"

that oat chromosomes are similarly arranged, with areas
of lower gene frequency and recombination interspersed
with gene clusters and recombination hotspots.

In previous studies, DArT markers sharing the same
map positions were considered redundant loci (Tinker et al.
2009). Using the mapped marker-to-marker correlation
coefficients based on a panel of diverse lines, we were able
to differentiate between truly redundant DArT markers and
tightly linked markers that could not be resolved with
available numbers of RILs. This technique provides a
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prefix and domestication-associated traits Lp, Awn, Ba, and Knb
(cytological knob) are indicated. Bars to the left of each linkage group
indicate haplotypic blocks of minor alleles matching domesticated Ba
13-13 or wild #169. Major blocks matching Ba 13-13 are at 0.0-36.8
on BAM_4, 16.6-34.8 on BAM_9, 70.5-87.7 on BAM_10, and in the
top portion of BAM_12

method to separate informative from redundant markers in
other studies with small population sizes.

The domestication syndrome genes in this study fit the
model for a single Mendelian locus and mapped accord-
ingly on BAM 11 and BAM 13. This result concurs with
the domestication profile in Triticum dicoccoides, the wild
tetraploid progenitor of cultivated wheat, where domesti-
cation syndrome factors were controlled predominantly by
QTL in a single genome (Peng et al. 2003). Like wheat and
other grass species (Middleton 1938; Morishima 1984;
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Fig. 3 continued
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Fig. 3 continued

Paterson et al. 1995; Peng et al. 2003; Poncet et al. 2000;
Xiong et al. 1999), the oat domestication traits are con-
trolled by a small number of genes with relatively large
phenotypic effects. On the BAM linkage map, these genes
are positioned near the telomeres, regions typically rec-
ognized for high gene density and frequent recombination
(Sandhu and Gill 2002). Conveniently, the subtelomeric
localization of these genes was made possible by cyto-
logically scoring a knob that cosegregated with the wild
alleles. The small number of domestication genes, which
correspond loosely in genomes of various grass species,
has been suggested as an indication of rapid domestication
(Paterson et al. 1995), a possibility made more feasible by
the genetic location within the chromosome. The current
map opens the way for further study of the domestication
syndrome elsewhere in the oat genus, such as the AGAg

@ Springer

diploid A. strigosa Schreb., as well as the AABB tetraploid
A. abyssinica Hochst.

Within the panel of 11 A. magna genotypes, cluster
resolution appeared to be influenced by geographic origin
(Fig. 4). Although all genotypes (with the exception of Ba
13-13) were collected from the northern coastal region and
adjacent lowlands of Morocco, clustering was to some
extent associated with localities within this region. For
example, Cc 7069 and Cc 7237 are both from the same
village, while Cc 7244 is from a neighboring town. How-
ever, proximity of the collection sites and unknown travel
and dispersal patterns make it impossible to clearly corre-
late cluster divisions with geographic origin.

Patterns of minor allele clustering provide significant
clues for genome discrimination, and for dissection of
genome origin and conservation within Avena species.
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Fig. 4 Genetic diversity analysis. Principal component analysis
(a) and hierarchical clustering (b) of allelic diversity at 2,014 DArT
loci was performed using 11 Avena magna lines, including the parents
of the BAM mapping population. Analysis was performed using JMP
Genomics (SAS Institute, Cary, North Carolina)

Seven linkage groups contained regions of loci with minor
alleles matching #169, while seven groups contained
regions with minor alleles matching both wild and
domesticated parents. This observation hints at possible
conservation of #169-like alleles representing haplotypic
blocks of A. magna DNA that are conserved within the
species and distinct from similar subgenomic regions of
hexaploid oat. Cytogenetic evidence for intra-genome
variation among C-banded chromosomes of the C genomes
of Sections Pachycarpa (Baum) and Avena has been
reported (Jellen and Ladizinsky 2000). Thus, it seems
likely not only that the linkage groups with conservation of
#169 alleles represent C-genome chromosomes, but also
that the C genome represented in A. magna is distinct from

that of hexaploid oat. This supports the contention, based
on chromosome morphological similarities (Jellen and
Ladizinsky 2000) and hybrid pairing data (Ladizinsky
2000), that A. insularis rather than A. magna or A. murphyi
is the immediate tetraploid ancestor of hexaploid oat.
Additional confirmation for the identity of C-genome
chromosomes is provided by the cytological knob associ-
ated with non-domestication alleles. Cytogenetic investi-
gations of numerous wild and domesticated Avena
accessions of Sections Pachycarpa (4x) and Avena (6x)
have suggested an association between this chromosome
5CL telomeric knob and spikelet-dispersed phenotypes
(Jellen and Ladizinsky 2000; Jellen unpublished). In this
study, the knob was mapped to linkage group BAM 13,
which had conserved minor-allele clusters from A. magna.
Interestingly, the domestication gene controlling lemma
pubescence (Lp) mapped to BAM 11, which similarly
contained A. magna minor-allele clusters. As an extension
of this logic, linkage groups represented by A. magna
minor-allele clusters should define the C-genome
chromosomes.

In contrast, the alternate genome of A. magna (DD)
appears to be similar to that of hexaploid oat. Broad
interspecific similarities within the D genome suggest that
the diploid donor was cross-compatible and hybridized
widely with various species. In this study, the distribution
of loci containing minor alleles matching both wild and
domesticated accessions indicates that conservation across
Avena species is caused by selection of key phenotypes
such as disease resistance, and not ancestral bottlenecks.
Recently, the Ogle1040/TAM 0O-301 (OT) linkage group
OT32 containing several crown rust resistance QTL
(Hoffman et al. 2006; Jackson et al. 2010; Jackson et al.
2007) was anchored to chromosome 9D using DArT
deletion analysis on monosomic stocks (Jackson et al.
2009). This same chromosome was also found to contain a
QTL for partial crown rust resistance in MN841801
(Acevedo et al. 2010). Although shared DArT markers
between the BAM and OT linkage maps were insufficient
to facilitate a study of synteny, five DArT loci linked to the
aforementioned QTL were found in a region containing
minor alleles on BAM 1. This suggests that this region is
homeologous to chromosome 9D in cultivated oat and was
conserved among Avena species due to selection for crown
rust resistance. In the present study, the average linkage
group length of the D-genome chromosomes was greater
than those of the C genome (Table 3; Fig. 3). Since the C
genome in oat is highly heterochromatic (Jellen et al. 1993;
Linares et al. 1992) and heterochromatic DNA is methyl-
ated in grasses like rice (Yan et al. 2010), this result sup-
ports C- and D-genome assignments.

The large number of molecular markers developed in
this study allowed for construction of the first complete oat
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linkage map and provided important insight on C- and
D-genome ancestry and oat domestication. Mapped mar-
ker-to-marker correlations allowed discrimination of
redundant loci and assignment of linkage groups to C and
D genomes. Oat domestication phenotypes were shown to
be controlled primarily by single genes clustered in telo-
meric regions, suggesting potential for rapid adaptation.
Taken as a whole, these results provide clues on the
evolutionary development of A. magna, and, more broadly,
on possible genome interrelationships in the context of
polyploidization. Unfortunately, syntenic relationships
between tetraploid and hexaploid linkage maps could not
be resolved based on the lack of shared markers on pub-
lished maps. Future work should be aimed at specific
development of shared markers to facilitate comparative
mapping between genomes of these species. Overall, these
results facilitate deployment of key A. magna characteris-
tics and provide a unique resource for future studies of oat
evolution and comparative genomics.
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